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Analysis of a ThirduOrder Sum Resonance 

It is worth considering an experiment on a sum resonance. I will give an analytic 
treatment of a third-order sum resonance. The treatment parallels that in LS-132 for 
the Walkinshaw difference resonance. Although the algebra is essentially the same as 
for the difference resonance, the sum resonance appears to have a richer structure. 

1. Analysis of the Resonance. 

The Hamiltonian in the neighborhood of the sum resonance 
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(1.1) 

can be written in terms of angle-action variables in the form 
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We first transform to resonant coordinates via the generating function 

which gives 
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The resonant hamiltonian is 
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where 

(1.8) 

We see that J 2 is a constant of the motion. If J 2>0, i.e. if Jy <2Jx ' then the motion is 
required by Eq.(l.4) to lie outside the circle 2J1 :::: J 2 in the J1' 1'1 -phase plane. Recall 
that for the difference resonance, the motion was required to lie inside this circle. In 
contrast to the difference resonance, for large initial y-amplitudes near the sum 
resonance, J 2 can be negative, and the circle 2J1 :::: J 2 does not exist. Moreover, as we 
see from Eq.(1.6), the amplitudes Jx ' Jy must increase and decrease together! 

In rectangular coordinates 

'I P = (J, J", ) a C 4 S J: ) (1.9) 

the hamiltonian is 
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where the irrelevant constant - vyJ2 has been omitted. 

For the value hs ::;; (1!2).eJ2 + (lJ4)aJ2
2 corresponding to the limiting circle J 2-

2J 1 =0, Eq.(1.10) factors into the product of two circles: 

(1.11) 

The fIrst factor is the limiting circle, and the second is the circle 

E 
;4 / (1.12) 

where 

(1.13) 

Note that except for a few sign differences, formulas (1.10), (1.11) and (1.12) are the 
same as the corresponding formulas in LS-132. We win call the limiting circle 2J1 = J2 
the "small" circle, and the circle (1.12) the "large" circle. The names are descriptive if 
the nonlinearities are very small. However, if they are large, then the large circle will 
disappear ifBIA > S2/A2. The circles intersect (if at all) in the points 

(1.14) 

There are now a number of cases, depending on whether either or both circles 
exist, whether they intersect, and if not, whether they lie outside each other or whether 
one lies inside the other, as well as on the number and position of the various fixed 
points of the motion. A number of typical cases are sketched in Fig. 1. The small circle 
is shaded, since its interior is a non-physical region. The large circle is drawn with a 
dashed line. Since both the interior and the exterior of the large circle are accessible, 
the existence or non-existence of the large circle has no effect on the topology of the 
constant hs contours, unless the large circle intersects the small circle. In all cases, the 
motion is stable at large amplitudes, because when p2+Q2 is very large, Eq.(1.10) 
becomes the equation of a circle. 

There are two reasons for the richer variety for the sum resonance. First, the motion 
lies outside the small circle, and the contour plot of hs may have more structure there. 
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Second, for the difference resonance, we assumed small nonlinearities, which rules out 
many of the cases in Fig. 1. For the sum resonance, both x and y motions go to very 
large amplitudes, if we start above the coupling threshold and the nonlinearities are 
small. Therefore, if we are to do the experiment without losing beam every time we 
exceed the threshold, we must depend on the nonlinearities to confine the motion. We 
must therefore consider finite nonlinearities in analyzing the sum resonance, as we did 
for the third-integral resonance 3vx=m. In case the initial y-amplitude is very small, 
J 2 is always positive, and the number of cases we must consider is smaller. 

It is convenient both experimentally and theoretically to consider motions in which 
the y-amplitude is initially very small and the x-amplitude is finite. In that case, 
J2 = Xo 2, where Xo is the initial x-amplitude. The only cases that can occur are those 
labelled a, ... ,e in Fig. 1. The motion lies on a contour which is close to the small circle. 
Case a is the unstable case, and occurs for Xo 2 >Qo 2, i.e., for 

(1.15) 

where 

(1.16) 

For small nonlinearities, the threshold and upper limit are given by 

{ LI 'Ji~J '/ '.5- X-- I 
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(1.17) 

The maximum x and y amplitudes are 

) 
(1.18) 

where 

(1.19) 

The last expression is an approximation for small nonlinearities. It will be important 
to check whether parameters can be found such that the maximum y-amplitude is 
within the vacuum chamber, in order to make an experiment on the sum resonance 
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practical. For small nonlinearities, and Xo at the threshold value, the maximum y ~ 

amplitude is 

(1.20) 

If SI A can be made small enough, the experiment is practical. 

In cases band c in Fig.l, the y motion is stable at small amplitudes, (contours near 
the small circle), but there is a threshold for the y-amplitude above which the motion is 
unstable. 

Just above the threshold for the difference resonance, the growth in y~amplitude is 
very small. In contrast, as we see from Fig.la, just above the threshold for the sum 
resonance, (when the circles overlap only slightly), the y-amplitude will grow to a very 
large value, along with the x~amplitude. The threshold for the sum resonance is 
abrupt and dramatic. It is possible that even if the maximum y-amplitude is outside 
the vacuum chamber, we might be able to do the experiment if we are careful to exceed 
the threshold only slightly. We would then have only a fraction of the beam above 
threshold, and would lose only a fraction of it in each experiment. 

If nonlinearities are significant at the difference resonance, then we can also have 
both a threshold and an upper limit for the resonant coupling, as in Eq.(1.16) above. 

2. Connection with the Real Ring. 

The calculation in Section 2 ofLS-132 gives all terms up to third order, including 
the term which drives the sum resonance. All formulas in LS-132 apply also here. The 
sextupole coefficient in the resonant term in Eq.(1.2) is given by Eq.(2.4) ofLS-132: 

(2.1) 

The amplitude Ss of the sextupole term that drives the sum resonance is exactly the 
same as the amplitude Sw that drives the difference resonance. The phase is, from 
Eq.(2.5), LS-132: 

(2.2) 
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These formulas give the amplitude and phase of the driving term for a single sextupole. 
If there are more than one sextupole, each contributes a resonance term in Eq.(1.2), 
and the terms must be added. 

3. Transforming the Non-Resonant Terms. 

The non-resonant terms in the complete hamiltonian can be transformed away by 
the method used in LS-132, Section 3. The calculation is precisely the same, except 
that the term which is dropped corresponds to the sum resonance (1.1). The resulting 
formulas for the corrections to the coefficients in Eq.(1.2) are, corresponding to 
Eqs.(3.5)-(3.7) in LS-132: 

(3.1) 

(3.2) 

(3.3) 

where primes on the summations mean that the resonant term is to be omitted, and 
where S3 is given by Eq.C2.l2) ofLS-13l: 

I x"/1. 131 ) 
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Figure 1. Contour sketches ofhs for various parameter ranges. 




